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ABSTRACT

The Sun’s magnetic field is strongly structured over a broad range of scales. The magnetic spatial

power spectral analysis provides a powerful tool to understand the various scales of magnetic fields and

their interaction with plasma motion. We aim to investigate the power spectra using spherical harmonic

decomposition of high-resolution SOHO/MDI and SDO/HMI synoptic magnetograms covering three

consecutive solar cycle minima in a series of papers. As the first of the series, we calibrate and analyze

the power spectra based on co-temporal SDO/HMI and SOHO/MDI data in this paper. For the first

time, we find that the calibration factor r between SOHO/MDI and SDO/HMI varies with the spatial

scale l of the magnetic field, where l is the degree of a spherical harmonics. The calibration factor

satisfies r(l) =
√
−0.021l0.64 + 2 (5 < l ≤ 539). With the calibration function, most contemporaneous

SOHO/MDI and SDO/HMI magnetograms show consistent power spectra from about 8 Mm to the

global scales over about 3 orders of magnitudes. Moreover, magnetic power spectra from SOHO/MDI

and SDO/HMI maps show peaks/knees at l ≈ 120 corresponding to the typical supergranular scale

(about 35 Mm) constrained from direct velocimetric measurements. This study paves the way for

investigating the solar-cycle dependence of supergranulation and magnetic power spectra in subsequent

studies.
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1. INTRODUCTION

The solar magnetic field ubiquitously distributed on

the solar surface is highly structured and multiscale

(Solanki et al. 2006). Magnetic features have spatial

scales from the global axial dipole field, to active re-

gions (ARs), to the network and internetwork magnetic

fields, and further to scales smaller than can currently

be resolved (de Wijn et al. 2009). The well-organized

magnetic features result from the direct and continuous

interaction of the magnetic fields with turbulent convec-

tive flows. For instance, the supergranulation velocity

field is regarded to be responsible for the web-like struc-

ture of the photospheric magnetic fields, i.e., network

magnetic fields (Leighton et al. 1962; Simon & Leighton

1964; Rincon & Rieutord 2018).

The kinetic and magnetic spatial power spectra over a

wide range of scales provide an effective way to explore

the physical processes at the origin of different mag-

netic features and their interaction with plasma flows

(Nakagawa & Priest 1973; Nakagawa & Levine 1974;

Petrovay 2001). Many efforts have been taken to ana-

lyze the velocity maps for the kinetic power spectra. Us-

ing spherical harmonic decomposition, Hathaway et al.

(2000, 2015) obtain photospheric kinetic energy spec-

tra covering the degree of spherical harmonics, l, from

l=1 to l ∼3000 based on the high-resolution full-disk

Dopplergrams of MDI onboard the SOHO and HMI on-
board the SDO, respectively. Both spectra show dis-

tinct peaks representing granulation of about 1 Mm and

supergranulation of about 35 Mm. Since supergranula-

tion is strongly linked to the structure of the magnetic

field, Williams & Pesnell (2011) compare supergranu-

lar characteristics between the minima of cycles 22/23

and 23/24 using the same data and method as Hath-

away et al. (2000). Using the same method, Williams

et al. (2014) further analyze Doppler data from contem-

poraneous HMI and MDI observations. They show that

supergranulation appears to be smaller within HMI data

than is measured with MDI.

Being different from studies on kinetic power spec-

tra covering a wide range of scales, most previous at-

tempts on magnetic power spectra cover narrower spa-

tial scales, especially one of the two ends of the resolved

scales. The constantly improving spatial resolution of
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magnetic field measurements leads to magnetic spectra

studies in the upper end of the spectra covering granular

and subgranular scales. Using Fourier decompositions of

local magnetograms of the quiet Sun, Abramenko et al.

(2001); Goode et al. (2010); Stenflo (2012); Danilovic

et al. (2016); Abramenko & Kutsenko (2020) studied

magnetic power spectra aiming to understand properties

of internetwork magnetic field and its possible origin,

especially its connection with the small-scale dynamo

(Vögler & Schüssler 2007; Marschalkó et al. 2013). The

lower end of the magnetic power spectrum corresponds

to the global-scale field. Its properties provide insights

into the understanding of the solar cycle and the behav-

ior of the Sun as a star (Vidotto 2016; Vidotto et al.

2018). DeRosa et al. (2012); Pipin & Kosovichev (2018)

decomposed full-disk synoptic magnetograms from MDI

using spherical harmonic decomposition. Their spectra

span from l=1 to l ∼100 to understand the solar cycle

and large-scale dynamo (Karak et al. 2014; Charbon-

neau 2020). Most of the rest of studies of the mag-

netic power spectra concentrate on the analysis of local

magnetograms of ARs for the relationship between flare

productivity and the magnetic power index (Abramenko

et al. 2002; Abramenko & Yurchyshyn 2010; Mandage

& McAteer 2016) or for the variation of magnetic power

spectra during ARs flux emergence (Kutsenko et al.

2019).

The aforementioned efforts on magnetic power spec-

tra indicate that there are very few studies of magnetic

power spectra emphasizing supergranulation so far. One

of the relevant studies is made by Katsukawa & Orozco

Suárez (2012), whose magnetic power spectra show weak

peaks at the supergranular scales based on Hinode SOT

magnetograms between 2006 November and 2007 De-

cember. Given the association between supergranula-

tion and the magnetic network, it is natural to wonder

about the following questions. What is the reliable mag-

netic power spectrum in the broad spatial range covering

the supergranular scale? Do the spectra show peaks or

knees at the supergranular scale? How do the power

spectrum and the scale corresponding to supergranu-

lation vary within a solar cycle and over multiple so-

lar cycles? To our knowledge, all of the questions have

not been directly investigated as of now. Many studies

on the cycle-dependence of the supergranular size have

been carried out by other data sets, e.g., Ca II K images

(McIntosh et al. 2011) and Doppler velocity data (De

Rosa & Toomre 2004), which give quite controversial

results.

Thanks to successive high-resolution full-disk mag-

netic field measurements from MDI and HMI since 1996

onwards, we have an opportunity to investigate the mag-

netic power spectra over a broad range of scales from

the global scale to supergranular scale and to a few Mm

over cycles 23 and 24. This period covers three cycle

minima including the notable deep and extended cycle

23/24 minimum (Jiang et al. 2013). Moreover, cycle

24 is the weakest cycle over the past 100 yr. These

provide a rare opportunity to deeply investigate the cy-

cle dependence and activity dependence of the magnetic

power spectrum and its supergranulation scale. How-

ever, MDI and HMI adopt different spectral lines and

have different spatial resolutions and data qualities (Liu

et al. 2012). So to investigate the property of the mag-

netic power spectrum over multiple cycles using mea-

surements from the two instruments, the calibration be-

tween the co-temporal HMI and MDI magnetograms is

the prerequisite.

Two major methods are widely used to compare and

calibrate line-of-sight magnetograms and synoptic maps

from different instruments. They are the pixel-by-pixel

comparison (e.g., Liu et al. 2012; Riley et al. 2014;

Pietarila et al. 2013; Tran et al. 2005) and histogram

methods (e.g., Riley et al. 2014; Jones 1992; Jones

et al. 2000; Wenzler et al. 2006). The calibration factor

varies somewhat with center-to-limb distance and field

strength. But neither method can answer whether the

calibration factor varies with the spatial scales of the

magnetic field. Virtanen & Mursula (2017) introduce

a new method for scaling the photospheric magnetic

field in terms of the harmonic expansion and investigate

the scaling of the harmonic coefficients between some

pairs of data sets (without the pair of MDI and HMI).

The method can give an independent scaling factor for

the different harmonic terms, corresponding to differ-

ent spatial scales. The spatial-scale dependence of the

calibration factor affects the configuration of the mag-

netic power spectrum. This inspires us to explore the

calibration between MDI and HMI data in terms of the

spherical harmonic decomposition as the first step to

investigating the properties of the magnetic power spec-

trum, in this study.

In summary, this paper commences a series of investi-

gations into the Sun’s magnetic power spectrum aiming

to quantify the solar cycle dependence of the proper-

ties of the magnetic power spectrum over the broadest

range of scales so far. The objective of the first paper

is twofold: spatial-scale dependent calibration between

MDI and HMI synoptic magnetograms and identifica-

tion of the supergranular scale based on calibrated MDI

and HMI co-temporal magnetic power spectra. The sec-

ond paper will study the variation of the magnetic power

spectra after the calibration during 1996-2020 covering

cycles 23 and 24 with three consecutive cycle minima.
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We will put emphasis on the temporal variation of the

supergranular size and the power indices for the inertial

range between AR scales and supergranular scales in the

course of the solar cycle and over 2 cycles. In the third

paper, we will focus on the temporal variation of the

spectra at the range that is larger than AR scales.

This paper is organized as follows. We describe MDI

and HMI synoptic magnetograms and the method of

obtaining the magnetic power spectra by spherical har-

monic decomposition in Section 2. In Section 3, we

present our calibration of co-temporal MDI and HMI

magnetograms. The identification and characterization

of the supergranulation pattern based on the calibrated

magnetic power spectra are also presented in this sec-

tion. We summarize and discuss the above results in

Section 4.

2. DATA AND ANALYSIS

2.1. Data

In our series of studies, we use two radial synoptic

magnetogram data sets covering the 23rd and 24th solar

cycles. They are observed by Michelson Doppler Imager

(MDI) on board the Solar and Heliospheric Observatory

(SOHO) (Scherrer et al. 1995) and the Helioseismic and

Magnetic Imager (HMI) on board the Solar Dynamics

Observatory (SDO) (Scherrer et al. 2012; Schou et al.

2012), respectively. The two instruments utilize dif-

ferent spectral lines with various resolutions: the Ni I

6768 Å (Fe I 6173 Å) (Norton et al. 2006) is adopted

as the spectral line for the MDI (HMI), with coverage

of 3600 × 1080 (3600 × 1440) pixels. The data sets be-

gin in Carrington Rotation (CR) 1911 (July 1996) and

end in CR 2225 (December 2019, data missing for CRs

1938-1942 and CR 1945). In this paper, we focus on

analyzing the synoptic maps for the overlap period, i.e.

from CR 2097 to CR 2104.

The initial synoptic maps lack data on the polar mag-

netic fields, which are crucial for the decomposition

of the spherical harmonic function. Therefore, we use

polar-corrected data (Sun et al. 2011; Sun 2018). Specif-

ically, they interpolate and smooth the north (south)

polar magnetic fields by using a multi-year series of

well-observed polar fields from each September (March).

This process enables synoptic maps with polar field cor-

rection to be obtained. It is worth noting that the polar

correction approach of HMI differs slightly from that of

MDI, and the implications of these differences are ana-

lyzed in Section 3.2.

2.2. Spherical harmonic decomposition and power

spectra

(a) (b)

(c) (d)

Figure 1. CR 2097 synoptic map as an example of the
spherical harmonic expansion. An orthographic projection
of the map centered at the equator and the longitude of 0◦

is adopted. (a) the original synoptic map; (b)-(d) spherical
harmonics reconstruction up to the maximum degree lmax =
30, 120, and 539, respectively. The magnetic fields in Panels
(a)-(d) are saturated at 60, 8, 25, and 60 G, respectively.

For the magnetic field B(θ, ϕ), we can express it by

the following Eq. (1)

B(θ, φ) =

∞∑
l=0

l∑
m=−l

BlmYlm(θ, φ), (1)

where θ is the colatitude, ϕ is the longitude, Yl,m(θ, φ)

is the spherical harmonic function with degree l and az-

imuthal orderm, andBl,m is the corresponding spherical

harmonic coefficient.

For each synoptic map, we use the “pyshtools” pack-

age in Python to perform a spherical harmonic decom-

position. The algorithm is proposed by Driscoll & Healy

(1994), who employ a grid suitable for data with differ-

ent sampling densities at different latitudes and intro-

duce weight coefficients. For example, the longitudi-

nal distances of the pixel points near the equator are

larger in synoptic maps than those near the polar re-

gion. Therefore, the data need to be weighted when

performing the spherical harmonic decomposition. The

discretization formula for obtaining the spherical har-

monic coefficient for a grid of size 2n× 2n, introducing

the weighting factor aj , is given by:

Blm =

√
2π

2n

2n−1∑
j=0

2n−1∑
k=0

ajB(θj , ϕk)Ylm(θj , ϕk), (2)

where θj = πj/2n, ϕk = πk/n, corresponding to

spherical coordinates for any point on the sphere, and
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the number of grid points in both latitude and longitude

is 2n. The weight coefficient aj is given by the following

equation

aj =
2
√
2

n
sin

(
πj

n

) n
2 −1∑
l=0

1

2l + 1
sin

(
[2l + 1]

πj

n

)
,

j = 0, . . . . . . , n− 1.

(3)

This algorithm requires the grid to be n×2n or n×n.

Therefore, as the first step in data processing, we trans-

form the data resolution to 2160 × 1080 for MDI and

2880 × 1440 for HMI by a simple linear two-point in-

terpolation algorithm. Afterward, we also convert data

from an equal sine-latitude distribution to an equal lat-

itude distribution. At this step, we first calculate the

sine of latitude at equal intervals. Then the same two-

point interpolation algorithm is used to transform the

data based on sine-latitudes. After these processes, the

data can be used for “pyshtools”.

Due to the instrumental resolution limitations and

sampling theorem, we decompose the data up to l = 539

and l = 719 for MDI and HMI synoptic maps, respec-

tively. In the subsequent analysis, we consider only

spherical harmonic decomposition results of l < 540 for

both data sets. As an example, Figure 1 presents the

magnetic field components at different spatial scales af-

ter decomposing the CR 2097 synoptic map, which is

shown in Figure 2 (a). Figure 1 (a) is the spherical

projection of the original synoptic map. Panels (b)-(d)

show maps reconstructed by spherical harmonics up to

different maximum degrees. Large-scale structures be-

come progressively more refined from Panels (b) to (d)

with lmax increasing from 30 to 539. These expected re-

sults illustrate the algorithm’s validity for the spherical

harmonic decomposition of the magnetograms. We can

therefore use the results to obtain the power spectra.

Using the orthogonality between the spherical har-

monic functions, Parseval’s theorem in the Cartesian

coordinate system can be extended to the spherical ge-

ometry. That is,∫
Ω

B2(θ, ϕ)dΩ =

∞∑
l=0

P (l), (4)

where P is the power spectrum and it is related to the

spherical harmonic coefficients by

P (l) =

l∑
m=−l

B2
lm. (5)

It is clear from Eq. (5) that in the power spectrum, in-

formation about the scale of azimuthal order m is com-

bined. In our work, the spectral power represents the

magnetic energy at the spatial scale corresponding to

the spherical harmonic degree l. To convert the degree

l to the actual spatial scale λ, we can use the following

equation:

λ =
2πR⊙√
l(l + 1)

, (6)

where the parameter R⊙ is the solar radius.

3. RESULTS

3.1. Scale dependence of MDI & HMI data

After the above data processing steps, we obtain the

magnetic power spectra of eight CRs during the over-

lapping period. As examples, Figures 2 (a) and (b)

show the synoptic magnetograms for CR 2097 and CR

2101, respectively, while the corresponding HMI and

MDI magnetic power spectra are shown in Figures 2

(c) and (d). The same figures but for the remaining six

CRs are shown in the appendix.

Figures 2 (c) and (d) show that both magnetic field

strength and spatial scales influence the difference be-

tween HMI and MDI power spectra, which is consistent

with previous studies (Liu et al. 2012; Riley et al. 2014;

Pietarila et al. 2013; Virtanen & Mursula 2017). We

next investigate whether the impact of these two fac-

tors is minimal enough to use a fixed calibration factor

or whether it is necessary to calibrate based on spatial

scales.

We present a comparison of the MDI and HMI spectral

power for data during the overlapping period in Figure 3.

The red line represents the calibration results obtained

by Liu et al. (2012). The calibration factor, 1.4, corre-

sponds to the vertical intercept in the log-log plot. The

plot shows that the distribution of points is non-linear,

with a significant deviation from the red line. That is,

the calibration factor varies enough to make a fixed cal-

ibration factor inapplicable. Thus we need to develop

a new calibration method applicable to power spectra

analysis.

Notably, black dots in Figure 3 (small-scale part of

magnetic fields) generally have smaller calibration fac-

tors and lower spectral power than grey dots (large-scale

part). This may suggest that the calibration factors are

smaller for weaker magnetic fields. However, this seems

to contradict the findings of Liu et al. (2012), which indi-

cate that the calibration factors are smaller for stronger

magnetic fields. This discrepancy may arise from the

stronger influence of spatial scale on the calibration fac-

tor than that of magnetic strength, with smaller spatial

scales corresponding to smaller factors. These results in-

dicate scale dependency in the difference between MDI

and HMI magnetograms. Therefore, it is essential to

consider the calibration at various scales in our work.
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(a) (b)

(g)

(e) (f)

(c) (d)

(h)

Figure 2. Magnetic power spectra obtained by MDI and HMI synoptic magnetograms for CR 2097 (left) and CR 2101 (right).
(a)-(b) Synoptic maps, magnetic fields are saturated at 53 G and 100 G, respectively. (c)-(d) Power spectra of the HMI map
(red), MDI map (blue), and calibrated HMI map (black). (e)-(f) Power spectra for lmax = 20. The blue dotted lines are the
power spectra of MDI maps multiplied by a factor of 0.8 on polar fields. (g)-(h) Results of supergranule identification based on
the spectrum from l=6 to l=250. The location of the peak or knee is marked with vertical gray dotted lines.
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Figure 3. Comparison of HMI and MDI spectral power.
The horizontal and vertical axes are the spectral power of
HMI and MDI, respectively. The gray and black dots corre-
spond to spherical harmonical degrees l < 200 and l > 200
respectively. The red line represents the fixed calibration
factor 1.4, i.e. B2

l−MDI = 1.96B2
l−HMI (1.4 for Bl).

3.2. Influence of polar magnetic field on the power

spectra

In the theory of spherical harmonic decomposition, the

term l = 0 represents the average result of the global

scale magnetic field. For the magnetic field, the term

should be zero theoretically. However, this coefficient is

not zero based on observed magnetograms, which may

be introduced by noise or during the construction of the

synoptic magnetograms (Bertello et al. 2014). We will

not consider this term in the analysis that follows. The

power spectra in this paper all start from l = 1.

In Section 2.1, we mention that Sun et al. (2011); Sun

(2018) use similar approaches to correct the polar mag-

netic field of the HMI and MDI synoptic magnetograms.

However, the approaches require the use of the previous

year’s data for interpolation. But HMI synoptic mag-

netograms for the overlap period do not have the previ-

ous year’s data. So for this part, they use the data of

MDI instead. In addition, the polar fields are smoothed

and weighted with the non-polar data in the correction.

These correction methods increase uncertainties of the

polar magnetic field and further influence the magnetic

power spectra. Therefore, we need to determine the

calibration range according to the range of the power

spectra affected by the polar field.

We multiply the data above 75° north and south of

MDI magnetograms by a factor of 0.8 to test the effect

of the polar field. We then obtain their power spectra,

which are shown in Figures 2 (e) and (f). It can be

seen that the scaled MDI spectral power corresponding

to the dash line has a certain decrease at l = 1, 3, 5 and

are close to HMI. This just supports the idea that the

polar magnetic field has an impact on the power spectra

of the large scale field (l ≤ 5). The results are similar to

Virtanen & Mursula (2016): The correction of the polar

field affects axial dipole (l = 1) and quadrupole (l = 2)

but has no effect on the results of a smaller scale. Thus,

the effect of the polar field uncertainty for l > 5 can be

ignored. Taking these results together, we will calibrate

the power spectra for l > 5 and the calibration results

will be applied in the non-overlap period.

3.3. Scale dependent calibration function for MDI and

HMI magnetograms

In the first two subsections, we have shown that

the calibration factors are scale-dependent in the range

l > 5. To investigate this further, we combine data for

the eight CRs with l > 5 and explore the pattern of vari-

ation of the spectral power ratio B2
l−MDI/B

2
l−HMI with

the spherical harmonic degree l. The result is shown in

Figure 4. The plot clearly shows a decreasing trend in

the ratio as the degree l increases and this trend is con-

sistent across different CRs. This further suggests that

the calibration factor is a function of l.

Due to the limited number of CRs with the same l, the

impact of noise or measurement error is relatively large.

To mitigate the impact, we exclude special points by

discarding data larger than the variance σ for a given l.

The remaining data points are then averaged to obtain

the solid blue line in Figure 4. We use a nonlinear func-

tion to fit the averaged data and obtain the following

calibration function r(l):

r(l) =
Bl−MDI

Bl−HMI
=

√
−0.021ℓ0.64 + 2.02. (7)

The calibration factor r for l = 5 (≈ 800Mm) is 1.4,

while for l = 30 (≈ 140Mm) and l = 140 (≈ 30Mm), the

calibration factors are 1.35 and 1.23, respectively. The

factors are close to the calibration factor of 1.4 obtained

in Liu et al. (2012). These demonstrate that the cali-

bration factors obtained through traditional methods for

analyzing full-disk magnetograms are mostly relevant for

large-scale structures, such as active regions. Our results

suggest that the classical methods may have limited ap-

plicability to smaller-scale features. In contrast, Riley

et al. (2014) found a calibration factor r ≈ 1.05 for the

CR 2097 synoptic magnetogram. This value is smaller

than our calibration factor for the large-scale section but

larger than that for the small-scale section. As shown in

Figure 2 (c), small-scale features contribute significantly

to the total power, which suggests that the overall single

calibration factor obtained by averaging our calibration

factors may be similar to the value of 1.05.

In addition, Virtanen & Mursula (2017) concluded

that the calibration factors for low spherical degrees are

smaller than those obtained through pixel-by-pixel com-

parison or histogram techniques when they performed
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Figure 4. Spatial scale dependency of the calibration factor between MDI and HMI spectral power. Black and gray dots are
the observation data within and outside σ, the variance of the calibration factors for a given l, respectively. The blue line is the
mean of the black dots and is fitted to give the scale-dependent calibration function r(l) (red line).

Table 1. Quantitative analysis and comparison of calibration results

CR Consistent interval of la RSS(r = 1)b RSS(r = 1.4)b RSS(r(l))b ∆Br(l)/∆Br=1.4

2097 6-251 42.23 32.07 2.26 0.806

2098 6-178 24.73 48.67 5.55 0.810

2099 6-539 374.25 87.21 2.84 0.822

2100 6-539 163.74 29.12 4.19 0.812

2101 6-539 893.03 121.02 4.32 0.785

2102 6-539 318.19 91.14 3.68 0.800

2103 6-539 169.69 75.51 1.63 0.819

2104 162-539 153.16 436.56 145.14 0.807
a Consistent interval is the range for l where MDI and calibrated HMI power spectra are consistent.
b Residual sum of squares between the MDI and HMI power spectrum calibrated with the calibration factor r=1
(uncalibrated one), r=1.4, and calibration function Eq.(7), respectively.

spherical harmonic decomposition for synoptic maps.

However, it should be noted that their work did not

involve the calibration of HMI and MDI data sets, thus

the applicability of their conclusion to the calibration of

these two data sets is uncertain. Hence, we should be

careful to directly compare our findings with theirs.

3.4. Evaluation of the new calibration method

After applying the calibration function Eq. (7) to the

power spectra, we first evaluate the similarity between

the calibrated HMI and MDI power spectra. Specifi-

cally, we consider the calibrated HMI and MDI power

spectra to be consistent if the difference between them

is less than 20% of the MDI spectral power. We list the

consistent interval of l based on this criterion in the sec-

ond column of Table 1. Our calibration method leads to

throughout consistent HMI and MDI power spectra for

CRs 2099-2103, based on this criterion. Moreover, the

power spectra of CR 2097 and CR 2098 exhibit consis-

tency only on the large-scale part, from l = 6 to around

l ≈ 200. And the consistent interval for CR 2104 is

mainly in the small-scale part.

The exception of CR 2104 is also apparent in the cor-

responding images. In Figure 3, below the red line,

there is a cluster of gray dots, which results from CR

2104. In Figure 4 gray points below the black dots show
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a significant deviation. This part of the data is also

from CR 2104. These results suggest that there might

be some issues with the CR 2104 HMI or MDI mag-

netograms, which could be attributed to instrumental

measurements.

To illustrate in more detail the applicability of our cal-

ibration method for the power spectra analysis, we addi-

tionally use two quantitative comparisons. The residual

sum of squares (RSS) measures the difference between

the MDI power spectra and the uncalibrated (r = 1) or

calibrated HMI power spectra. The formula is as fol-

lows.

RSS =

539∑
l=6

(
B2

l−HMIc −B2
l−MDI

)2
. (8)

The results are shown in columns 3 to 5 of Table 1,

where r = 1.4 represents the fixed calibration factor 1.4

and r(l) represents the calibration function Eq. (7). The

smaller the RSS value is, the smaller difference between

the two power spectra is. While using a fixed calibration

factor, the RSS is reduced to only one-fifth to one-half

of the uncalibrated case. For CR 2098 and CR 2104, the

RSS even shows an increase. However, when using the

calibration function r(l), all the RSS show a decrease,

with the vast majority reduced to a tenth or even a

hundredth of the uncalibrated case. This shows that our

calibration method is more suitable for power spectra

analysis.

In addition to using the RSS to evaluate the effect of

our calibration on the power spectra, we also quantify

the effect on the magnetograms. To accomplish this, we

perform an inverse spherical harmonic decomposition of

the power spectra to reproduce the magnetograms. Us-

ing the MDI magnetograms as the reference, we sepa-

rately obtain the HMI magnetogram using the two cal-

ibration methods (fixed calibration factor 1.4 and cal-

ibration function r(l)). The ratio of the difference be-

tween the HMI and MDI magnetograms at a given pixel

is obtained using the following formula:

∆Br(l)

∆Br=1.4
=

BMDI −BHMI−r(l)

BMDI −BHMI−r=1.4
. (9)

For each CR map, we then conduct a linear regression of

the results for all pixels. The results are summarized in

the last column of Table 1. Notably, the ratios of magne-

togram differences for all CRs are within a narrow range

of 0.81± 0.01. These quantitative comparisons indicate

the efficacy of our calibration approaches in achieving

not only a better analysis of power spectra but also a

more consistent between HMI and MDI synoptic maps.

3.5. Supergranule identification

The analysis of Dopplergrams using spherical har-

monic functions, as discussed in Introduction, shows the

peak around l = 120 on the kinetic power spectra cor-

responding to supergranulation. In Section 3.3 we have

mentioned that MDI and calibrated HMI power spectra

are consistent around this degree. So it is feasible to

search for supergranule features in the magnetic power

spectra.

Based on Figure 2 and the power spectra images in the

appendix, it is apparent that a majority of the magnetic

power spectra exhibit peaks or knees around l = 120.

Here we use three algorithms to verify the existence of

these structures and the corresponding specific spatial

scales. We start with a morphological approach based

on the code developed by Duarte & Watanabe (2021) to

find the peaks in the spectra. We search and identify

peaks by the trend of the curve around the local maxi-

mum, the threshold, and the width. By adjusting these

parameters, the identification results can be optimised.

The corresponding results are in columns 2 and 3 (lsgr1)

of Table 2. The second method is similar to wavelet

analysis, where a wavelet is fitted to the peak and the

presence of a peak is discerned based on the result of fit

(Du et al. 2006). This method is achieved through the

‘scipy.signal.find peaks cwt’ within Python. Since the

method does not give the peak, but gives the center of

the wavelet, we list the range of the peak rather than the

exact value, with the results in columns 4 and 5 (lsgr2)

of Table 2. The third method we use is the algorithm

for finding peaks and knees used in the field of neural

power spectra: FOOOF (Donoghue et al. 2020). This

method gives information on the peaks of the four CRs

around the supergranule scale and also gives the knee

of the three CRs. The results are in columns 6 and 7

(lsgr3) of Table 2.

The supergranulation identification results are be-

tween l = 116 (36 Mm) and l = 140 (30 Mm), which are

consistent with the results in the kinetic power spectra.

Notably, for the same CR, we observe slight differences

in the results obtained from different methods. For in-

stance, in the case of CR 2099, the first two methods

yield a difference of ∆l = 16. The third method, mean-

while, can assist in determining which result is more re-

liable. Therefore, by combining the three methods, we

can identify the supergranule scale correlated features of

the power spectra of most CRs. However, we are unable

to identify significant features in the power spectra of

CR 2103, possibly due to the portion of power spectra

belonging to active regions masking supergranulation.

Furthermore, in the work of Williams et al. (2014),

they observe different sizes of supergranulation in the ki-

netic power spectra for HMI and MDI, with l = 132 for
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Table 2. Location of peak or knee identified on power spectra of MDI and calibrated HMI synoptic magnetograms for CRs
2097-2104.

CR lsgr1(HMI) lsgr1(MDI) lsgr2(HMI) lsgr2(MDI) lsgr3(HMI) lsgr3(MDI)

2097 130 130 131±5 132±5 129 130

2098 138 133

2099 140 140 156±5 156±5 143 139

2100 123 123 128±5 128±5 127 127

2101 123 120 119±5 119±5 117 117

2102 133 132

2103

2104 125 125

Notes. The symbols ‘lsgr1’, ‘lsgr2’, and ‘lsgr3’ are degrees of spherical harmonics of the identified peak or knee
corresponding to supergranulation using the three methods presented in Section 3.5.

HMI and l = 119 for MDI. They attribute the difference

to the different spatial resolutions. They show that by

smoothing the resolution of HMI Dopplergrams, a power

spectrum similar to MDI data can be obtained. How-

ever, our identifications do not indicate any significant

differences between the HMI and MDI results, which

remain generally consistent.

Regarding the absence of differences between the su-

pergranular scales in our results mentioned above, we

first exclude the effect of the calibration. We note that

the difference of calibration factors (∆r = 0.02) around

the supergranule scale cannot significantly alter the scale

of the feature. Furthermore, the identified supergranule

sizes in HMI and MDI maps of CR 2104 remain con-

sistent, even though their power spectra do not coin-

cide in l < 162. We suggest that the difference in the

identification results is due to the influence of small-

scale structures. Hathaway et al. (2002); Rincon et al.

(2017) mention that the kinetic power spectra near the

size of supergranulation can be affected by granulation,

which are not completely removed. The higher the res-

olution, the more features of granulation are included.

Therefore, smoothing maps with high resolution is es-

sentially a way to obtain similar power spectra by re-

ducing the influence of small-scale structures. Magnetic

power spectra in this paper are obtained from synop-

tic magnetograms, which have a relatively low resolu-

tion. Multiple full-disk magnetograms are averaged in

the construction of a synoptic map. Strong small-scale

magnetic structures and noise are removed. Therefore,

we can obtain ideal results in the magnetic power spec-

tra. On the other hand, in addition to small-scale struc-

tures, large-scale structures such as active regions may

also cause an unphysical shift of the position of super-

granulation in the power spectra. We need to be careful

about this potential effect in future work.

4. CONCLUSION AND DISCUSSION

In this work, we conduct spherical harmonic decompo-

sition of HMI and MDI synoptic magnetograms for their

overlapping period to obtain magnetic power spectra. A

scale-dependent calibration function between MDI and

HMI spectral power r(l) =
√
−0.021ℓ0.64 + 2.02 for mag-

netic power spectra analysis is derived. In some mag-

netic power spectra, the peak or knee around l = 120

associated with supergranulation is clearly presented.

This study lays the foundation for further research on

the cycle dependence of supergranulation.

The scale-dependent calibration factors might be

mainly attributed to the different effects of magnetic fill-

ing factors on the measurement of magnetic fields with

different scales. The magnetic filling factor is set to

the constant value of 1 when both the MDI and HMI

magnetograms were derived from polarimetric measure-

ments (Berger & Lites 2003; Liu et al. 2012; Centeno

et al. 2014; Griñón-Maŕın et al. 2021). As shown in

Figure 1, the larger-scale magnetic field is more uni-

formly distributed. For the smaller-scale field having

distinct magnetic structures, lower-resolution data tend

to give lower magnetic field strength since only the mean

flux density contributes to the Stokes profiles. Hence

we see the scaling factor r(l) decrease with l when

we scale higher-resolution HMI data to lower-resolution

MDI data. In addition, the different modulation trans-

fer functions for the two instruments could be the other

ingredient contributing to the scale-dependent calibra-

tion factors (Abramenko et al. 2001; Stenflo 2012), es-

pecially near the resolution limit of the MDI maps, i.e.,

around the largest l. The scale-dependent calibration

factors have been illustrated by Virtanen & Mursula

(2017), who investigated different pairs of datasets. But

note that they scaled lower-resolution data to higher-

resolution one, and the scaling factors typically increase

with l. There is no particular reason for us to choose

the lower-resolution data, MDI synoptic maps, as the

reference in this paper.
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In contrast to a constant calibration factor, our pro-

posed calibration function exhibits superior suitability

for power spectra analysis while simultaneously reducing

the discrepancies between magnetograms after calibra-

tion. Furthermore, as highlighted in Virtanen & Mur-

sula (2017), the calibration approach is independent of

the resolution of magnetograms, thereby reducing the

potential impact of resolution on the calibration results.

Despite the limited number of synoptic magnetograms

available during the overlap period of MDI and HMI, our

analysis of the power spectra of these magnetic maps re-

veals a consistent and scale-dependent variation of the

calibration factors, with no apparent signs of tempo-

ral variation. We limit our scale-dependent calibration

between HMI and MDI synoptic magnetograms to the

range l > 5 because of the unreliable measurement of

the polar field. The calibration function could be ex-

tended to the range l ≤ 5, which gives r about 1.4. The

value is essential for the understanding of the polar field

distribution and long-term evolution of the solar open

flux (Jiang et al. 2013; Linker et al. 2017).

So far there are very few studies of supergranulation-

scale magnetic fields with power spectra of MDI or HMI

synoptic maps. For the first time, to the best of our

knowledge, we derive the magnetic power spectrum over

the broad spatial scale from about 20 Mm to the global

scale and identify supergranulation based on the mag-

netic spectra. Although what we detected is actually

the magnetic network, rather than the supergranulation

flow, the magnetic network has a direct association with

supergranulation (Rincon & Rieutord 2018).

Most magnetic power spectra we investigated show a

distinct peak or knee at the supergranular scale of about

35 Mm (l ≈ 120), which is consistent with the typical

size measured from the Doppler velocity observations.

The consistency is expected given the association be-

tween supergranulation and the magnetic network and

the consistency also is a piece of evidence to support the

association. In contrast, some previous investigations

on the scale of supergranulation using different meth-

ods show divergent results. For example, applying local

correlation tracking techniques to Doppler velocity data

of MDI, De Rosa & Toomre (2004) derived the aver-

age supergranular cell diameter lies in the 12–20 Mm

range. Meunier et al. (2008) show the average size is

in the range of 16-17 Mm. However, the supergranu-

lation scale is not necessarily a distinct feature on all

magnetic power spectra as presented in Table 2 since

active regions tend to disorganize and wash away super-

granulation (Hindman et al. 2009). Due to the effects of

active regions and other sources of noise, the identifica-

tion of the peak or knee of the power spectra is slightly

method-dependent. The slightly different locations of

the peak or knee correspond to slightly different sizes

of supergranulation. Besides this random source for the

variation of supergranular sizes, there may also exit an

inherent variation of supergranular sizes with solar ac-

tivity (Meunier et al. 2007).

Knowledge of the variation of the supergranular size

presented by the magnetic power spectrum is crucial

for a better understanding of the interaction between

the magnetic field and convection at different scales

and of the solar total and spectral irradiance variations

(Yeo et al. 2014). In our subsequent work, we will re-

fine our identification methods of supergranulation from

magnetic power spectra and extend our analysis to the

entire solar cycles 23 and 24. We will investigate how

the size of supergranulation varies within a solar cycle

and over multiple cycles.
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APPENDIX

(a) (b)

(g) (h)

(e)

(c)

(f)

(d)

Figure 5. Same as Figure 2, but for CR 2098 (left) and CR 2099 (right).
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(d)

(a) (b)

(c)

(g) (h)

(e) (f)

Figure 6. Same as Figure 2, but for CR 2100 (left) and CR 2102 (right).
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(d)

(a) (b)

(c)

(g) (h)

(f)(e)

Figure 7. Same as Figure 2, but for CR 2103 (left) and CR 2104 (right).
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Katsukawa, Y., & Orozco Suárez, D. 2012, ApJ, 758, 139,

doi: 10.1088/0004-637X/758/2/139

Kutsenko, O. K., Kutsenko, A. S., & Abramenko, V. I.

2019, SoPh, 294, 102, doi: 10.1007/s11207-019-1498-3

Leighton, R. B., Noyes, R. W., & Simon, G. W. 1962, ApJ,

135, 474, doi: 10.1086/147285

Linker, J. A., Caplan, R. M., Downs, C., et al. 2017, ApJ,

848, 70, doi: 10.3847/1538-4357/aa8a70

Liu, Y., Hoeksema, J. T., Scherrer, P. H., et al. 2012, SoPh,

279, 295, doi: 10.1007/s11207-012-9976-x

Mandage, R. S., & McAteer, R. T. J. 2016, ApJ, 833, 237,

doi: 10.3847/1538-4357/833/2/237
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